Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases
نویسندگان
چکیده
Dominant mutations in five tRNA synthetases cause Charcot-Marie-Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNA(Gly) aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.
منابع مشابه
Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot-Marie-Tooth (CMT) peripheral neuropathy, characteriz...
متن کاملAn Active Dominant Mutation of Glycyl-tRNA Synthetase Causes Neuropathy in a Charcot-Marie-Tooth 2D Mouse Model
Of the many inherited Charcot-Marie-Tooth peripheral neuropathies, type 2D (CMT2D) is caused by dominant point mutations in the gene GARS, encoding glycyl tRNA synthetase (GlyRS). Here we report a dominant mutation in Gars that causes neuropathy in the mouse. Importantly, both sensory and motor axons are affected, and the dominant phenotype is not caused by a loss of the GlyRS aminoacylation fu...
متن کاملNpgRJ_NN_1910 828..837
We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and...
متن کاملCorrigendum: Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...
متن کاملNeuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice.
Dominant mutations in GARS, encoding the essential enzyme glycyl-tRNA synthetase (GlyRS), result in a form of Charcot-Marie-Tooth disease, type 2D (CMT2D), predominantly characterized by lower motor nerve degeneration. GlyRS charges the amino acid glycine with its cognate tRNA and is therefore essential for protein translation. However, the underlying mechanisms linking toxic gain-of-function G...
متن کامل